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LETTER TO THE EDITOR 

Scaling at the percolation threshold above six dimensions 

Amnon Aharony, Yuval Gefen and Aharon Kapitulnik 
Department of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel 

Received 20 July 1983 

Abstract. The fractal dimensionality of the infinite cluster at the percolation threshold for 
dimensionalities d > 6 is shown to be I) = 4 (rather than the naive finite size scaling 
prediction D = d - 2). Similarly, the conductivity of a sample of size L scales as LWd (rather 
than L-6).  This anomalous behaviour is related to a dangerous irrelevant variable, associ- 
ated with the probability to have vertices of three bonds. The crossover to the 
‘homogeneous’ behaviour occurs at length scales which are short compared with the 
correlation length. The ‘links and blobs’ picture is confirmed for d > 6, and the size of the 
latter is estimated. 

Much of the current interest in the properties of dilute systems concentrates on their 
geometrical structure in the vicinity of the percolation threshold, pc .  (For detailed 
reviews, see e.g. Stauffer 1979, Essam 1980, Kirkpatrick 1979). As the concentration 
p approaches p c ,  the pair connectedness length 6 diverges, (cc Ip-pcl-”. It is generally 
believed that on large length scales, L >> 6, the infinite cluster which appears for p > pc 
is homogeneous, with site (or bond) density Pmo: ( p - p J P  6-””. This homogeneity 
is believed to disappear for shorter length scales, L < 6. For these scales, the infinite 
cluster is believed to be self-similar, with a typical fractal dimensionality D. The value 
of D has been the subject of many recent papers (e.g. Stanley 1977, 1981, Pike and 
Stanley 1981, Stauffer 1980, Kirkpatrick 1979, Gefen et a1 1981, Mandelbrot 1977, 
1982, Kapitulnik et al 1983). To define D ,  consider a point on the infinite cluster and 
count the number M ( L )  of points on the same cluster within a volume Ld (of linear 
size L in d dimensions) centred at that point. Self-similarity implies that (Mandelbrot 
1977, 1982, Kapitulnik et a1 1983 and references) 

M (  L )  cc LD,  g << L << 6, (1) 
where g is a microscopic typical length (e.g. the lattice constant). 

For L >> 6, homogeneity implies that M ( L )  a P,Ld a 6-p/”Ld.  Assuming that 6 is 
the only relevant length in the problem, we may write M ( L ,  6 )  in the scaling form 
(e.g. Kapitulnik et a1 1983) 

M ( L ,  5) = &-P’”Ldm(L/&) .  (2) 
For L<< 6, M should become independent of 6. Thus, m ( x )  a x-~” ’  and M ( L )  a Ld-P/u ,  
i.e. 

D = d - p / v .  (3) 
This result also follows from finite size scaling at pc (Kirkpatrick 1979), and has been 
confirmed by direct Monte Carlo and laboratory experiments at d = 2 (e.g. Kapitulnik 
et a1 1983, Kapitulnik and Deutscher 1982). 
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Hyperscaling relations among the critical exponents, e.g. dv = 2 p  + y, imply that 
(3) may be replaced by 

= ( P  + Y ) / V ,  (4) 

where y describes the divergence of the mean squared size of the clusters. 
An alternative way to derive (4) is as follows: the number of sites, s([), in a finite 

cluster of size [, scales as lp-pcl-l’m, where l/a = p + y is the ‘magnetic’ exponent 
(Stauffer 1979). If one assumes that s( [ )a  tD  (‘strong self-similarity’), this implies 
equation (4) (Stanley and Coniglio 1983). Note that the exponent a is truly ‘thermo- 
dynamic’, and does not involve hyperscaling. 

Above six dimensions the critical exponents are known to assume their mean field 
values, p = 1, y = 1, v =; (Toulouse 1974, Harris et a1 1975). Thus, (3) predicts that 
D = d - 2, while (4) yields D = 4. The aim of the present paper is to understand this 
discrepancy (which is absent for d < 6 ) .  We find that 0 = 4  for all d > 6  (with 
logarithmic corrections at d = 6), and relate the breakdown of (3) to the appearance 
of an additional important length in the problem, L,. If w denotes the probability to 
find vertices at which three bonds meet, then one possible definition of this new length 
arises via w ~ L ~ , - ~  = 1. Equation (2) must now be replaced by 

M ( L ,  5, L,)  = w - ’ ( - ~ L ~ ~ ; ~ ( L / [ ,  L,/() .  ( 5 )  

For L,  << L<c ( this reduces to M a  w-’(-’L~(L/[)~-~((/L,)~-~ a wL4. For L >> [ we 
reproduce the homogeneous result, M a P,Ld a w-l (-2 Ld. The appearance of the 
additional length, L,, and the breakdown of the hyperscaling result (3)  for d > 6 ,  are 
related to the fact that w plays the role of a ‘dangerous irrelevant variable’ (Fisher 
1973). A similar breakdown of finite size scaling was recently noted by BrCzin (1982) 
for the Ising model at d > 4. 

Another exponent of interest concerns the behaviour of the conductivity of dilute 
resistor networks, 2.  Near pc, in the homogeneous regime L >> 6, one has I; a ( p - pc)w af 

(-”/”. Therefore, the conductance of a sample of linear size L behaves as 

g(L)  a L ~ - ’ z ( L )  a ~ ~ - ~ ( - w l ~ .  (6) 

V L ,  5 )  = 5-”’”s(L/5),  (7) 

Scaling with 5 as the only length would imply that 

approaching Z a  L-w/”  (and gaLd-’ -””)  in the self-similar regime L<< [ (Gefen et 
a1 1981 and references). For d >  6 one has p = 3 (de Gennes 1976), so that this 
scaling implies that g ( L ) a  Ld-8.  Instead, we argue below that 

g(L)  a L - ~  (8)  
for all d > 6 ,  L<< 5, and therefore that P(L)  crosses over from L-d at small L to w-’tW6 
at large L. 

The result (8) has important consequences with regard to the localisation of electrons 
at p,: since d(ln g)/d(ln L )  is negative, all the electronic states must be localised at pc 
(Gefen et a1 1983) for all d !  The detailed crossover from gaL-’  to g a  Ld-2(-6 
should identify the microscopic conductance (for p > p, )  at which extended states will 
begin to appear. 

We now give some more details on our arguments. We begin our discussion with 
a heuristic argument, which sheds light on the geometrical structure of the infinite 
cluster at d > 6.  This argument is based on the ‘links and nodes’ model (Skal and 
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Shklovskii 1974, de Gennes 1976), which is expected to be valid for d > 6  (Gefen 
1982). In this model, the backbone of the infinite cluster is composed of quasi-one- 
dimensional links, which connect nodes. At high dimensions, the links are expected 
to behave as random walks, so that the actual number of sites on a backbone link at 
scale L is of order MB(L)aL2.  A fraction of these sites, proportional to w, have 
‘dangling bonds’ attached to them. As we shall show below, the average ‘mass’ Md(L) 
of such a dangling bond is also of order L2. Thus 

M ( L )  = wMB(L)Md(L)a wL4. (9) 
We now turn to the homogeneous regime ( L  >> 6). Here, we expect that M ( L )  = 

LdPm, and that MB(L) = LdPB, where PB is the probability per site to belong to the 
backbone. A site belongs to the backbone if there exist at least two independent routes 
from it to infinity. If the probability of such a route is R, then to leading order in R 
P,aR,  P B a R 2  and thus P,cCP;. This result is exact on Cayley trees (Stephen, 
private communication, Harris and Lubensky 1983, Stein 1983), and is correct for all 
d > 6 (when loops are irrelevant). For L >> 6, we expect the size of the dangling bonds 
to be cut off at L-6, so that M,(L) is replaced by 6’ and L d P , = M ( L )  = 
wMB(L)Md(L)a WL~P;~’. Therefore, paca I / (  ~ 6 ’ ) .  The same result follows from 
mean field theory (see below). 

To show that Md(L) a L2, we start with the probability that a site belongs to a 
finite cluster of size s, sn, At p = p c ,  one has the power law behaviour sn,as’-‘  
(Stauffer 1979). For d >  6, + = 2 +  1/S = 5/2, independent of d. Moreover, mean field 
theory yields sn, a w-l” s-3”2 (Stephen 1977). This is equal to the Laplace transform 
of the equation of state, Pa( h), where h is the ‘ghost’ field. Since this equation involves 
only ‘thermodynamic’ exponents (e.g. p, ‘y, S), the result T = 5/2  does not depend on 
hyperscaling. 

Equation (9) used the fact that the backbone cuts each ‘dangling bond’ only once. 
Assuming that the distribution of the dangling bonds is the same as that of the finite 
clusters (Gefen 1982), Md(L)  is equal to the average size of all the finite clusters with 
less than M ( L )  sites, 

Md(L) a J- M ( L )  sn,s ds  U l l M ‘ ”  w-1/2 s -1 /2  dsaw-’/’ M(L)’/’. 
1 

Using the LHS of (9),  this becomes M ( L ) ~ w ” ~ M ~ ( L ) M ( L ) ” ’ ,  and we find 

M ( L )  a WM~(L>’. (10) 
Substituting MB(L) 

In the above argument we assumed that the backbone cuts each ‘dangling bond’ 
only once. In a volume of linear size L, the number of sites on the infinite cluster is 
M ( L ) a  wL4, and the number of sites on the backbone is MB(L)a:L2. The number 
of possible ‘meetings’ between them is thus of order wM(L)MB(L),t i.e. w2L6, and 
the density of such vertices is w ’ L ~ - ~ .  (Alternatively, this is the density of ‘meetings’ 
between the ‘full’ infinite cluster, of mass wL4, and an ‘average’ dangling bond, of 
‘mass’ L’.) For d > 6 we see that this renormalised density decreases with increasing 
L, and therefore our argument is consistent at large L. The theory must be modified 
for d c6. 

Note also that the density of vertices becomes smaller than unity for L >  L ,  This 
explains the physical meaning of L,: the vertices are in fact dense ‘blobs’ of size L,, 

I,’ we reproduce the RHS of (9) and we confirm that kf..(L) a L’. 

t Each meeting creates a new vertex, hence the factor w. 
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and the geometrical picture used above applies only for L > L,. The ‘links and nodes’ 
picture is thus turned into the ‘links, nodes and blobs’ picture, due to Stanley and 
Coniglio (1983): the quasi-one-dimensional links meet at multi-bond dense ‘blobs’, 
of typical size L,, and the Stanley-Coniglio picture is quantitatively confirmed for 
d < 6. Note that for d < 6 there exists no length except 5, and the ‘blobs’ (if they can 
be defined at all) are of typical size 6. The model should then probably be replaced 
by a self-similar fractal (Gefen er a1 1981). 

Having shown the consistency of our geometrical picture for d > 6 ,  equation (8) 
now follows immediately: the resistance between two points at linear distance L is 
equal to that of the backbone link between them, which has MB(L) a L2 basic resistors 
in series. Thus g ( L ) a  l / M B ( L ) a  L-2,  for all d >  6. 

A more explicit calculation of M ( L )  considers the conditional probability p,( r )  
that a site at a distance r from the origin belongs to a cluster of s sites, given that the 
origin belongs to it. The percolation correlationfunction G (  r )  is given by (Essam 1980) 

The function G(r) is explicitly known. It has the general scaling form G ( r )  = 
G ( r / [ ) .  For d > 6 ,  7 = 0 and G ( r )  is simply proportional to the Fourier trans- 

form of ( k 2 + r J 1 ,  with r , a ( p - p , )  (Aharony 1980). At p = p c ,  one thus has G ( r ) a  
I /  r d - 2 .  

Assuming that M ( L )  a wxLD,  ‘strong self-similarity’ (Wilke et a1 1984) implies 
that the number of sites on a cluster of size r, is also given by s ( r , ) a  wXrF. Since 
there are practically no sites at distances larger than r,, p,( r )  will decay exponentially 
to zero for r >  r,. We thus approximate p , ( r )  = O  for r >  r,, and therefore the sum in 
(1 1) contains only clusters with s > wXrD. On the other hand, n, decays exponentially 
to zero when r, > 5, yielding an upper limit of order w X t D .  For r < r, < 5, we expect 
all the clusters to look the same, i.e. p,( r )  = p,( r ) .  With these simplifying assumptions 
(which may be withdrawn in a detailed calculation), we thus have 

r2-d-rl  

For d > 6 we may use sn, a w - ” ~  s - ~ ’ ~ ,  so that I; sn, a w - ( ’ + ~ ) ’ ~  ( rFD’* - [ - D / 2 ) .  

For r << [ we may neglect 5 - D / 2  and PS,  and find that p5( r )  a w ( 1 r x ) / 2 r 2 - d + D / 2  . Thus, 
M ( L )  = j L  ddrp , (r )  a w(1+x1/2L2+D’2 . C omparison with w X L D  therefore identifies D = 
4 and x = 1, and confirms (9). Moreover, (12) allows us to estimate some corrections 
to this behaviour. The agreement between this result and our other derivations also 
confirms ‘strong self-similarity’ for d > 6. 

Thus far, we emphasised the behaviour of M ( L )  for L<< [. For r >> 6, both G ( r )  
and I; sn, in (12) decay exponentially to zero, and (12) approaches the homogeneous 
limit, pm+ P,. The details of the crossover from p m a  ~ r ~ - ~  to pm = P, = 1/( w t 2 )  are 
left for future analyses. We note, however, that one can define a series of crossover 
lengths, 

(13) 
The two terms in the numerator of (12) become comparable at L2, the two limiting 
behaviours of M ( L )  become comparable at L1 and those of g ( L )  become comparable 
at L3. There probably exists a range of length scales, below 5, through which various 
physical quantities cross over from their self-similar to their homogeneous behaviour. 

k 2 / ( d - 6 + 2 k ) ,  d - 6  2 k  l / ( d - 6 + 2 k )  L k = ( w t  ( L w  5 1 
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Clearly, all the physical properties scale according to our self-similar predictions (e.g. 
M a wL4, g a E') for L < L 1  a [2/(d-4), and according to the homogeneous ones for 
L> 6. It is not yet clear to us whether the range L1 < L < 5 represents a third scaling 
regime, or whether there is a separate cross-over for each property. One would also 
like to obtain a geometrical interpretation of the lengths Lk. 

Our last approach uses the mapping onto the limit q + 1 of the q-state Potts model. 
In this formulation the Hamiltonian has the form (Priest and Lubensky 1976a, b) 

(14) 

with r , a ( p , - p )  and q+  1 for percolation. The upper critical dimensionality of this 
problem is d, = 6. For d > 6, w is a 'dangerous irrelevant variable' (Fisher 1973). The 
critical properties of the model are described by the Gaussian fixed point, near which 
one has the simple recursion relations (Priest and Lubensky 1976a, b) 

W. (15) 

In the ordered phase ( p  > p c )  one also has the (non-zero) order parameter Q( I )  = 
Q. We now iterate until r( I )  = -1, i.e. [ ( I )  = e-'[ = 1, and use mean field theory 

to find that Q( l )  cc - r( l ) /  w( I ) .  The non-trivial dependence of w( I )  on I now leads 
to a cancellation of the d-dependence, and one has Pm= Q= e-21/ w ot t-2/ w, i.e. the 
mean field result (Pytte 1979). The arguments presented above give some more insight 
into the role played by w. For L<< 5, the renormalisation group transformation will 
transform L into L/e', and the scaling form ( 5 )  immediately follows (the second 

All the above results should be modified at d = 6, when logarithmic corrections 
must be added to most of the power laws. In particular, the correlation function now 
has the scaling form (Wilson and Kogut 1974) 

r( I )  = e2'r, w ( ~ )  ,e(3-d/2)l 

e(d-2)1/2 

variable, t/ L,, represents w( l)2/(6-d) = ( ~ ~ t ~ - ~ ) ~ / ( ~ - ~ )  ). 

G(k, r, w )  = exp 21 - q( 1 ' )  dl' G(e'k, r( I ) ,  w (  I ) ) ,  ( lo' ) 
and the iteration is stopped when r(1)  +e2'k2 = 1 (Nelson 1976). Since T (  I) a w( f ) 2 ,  
the prefactor yields a logarithmic correction at d = 6 (7 is of order E at d = 6 - E 

dimensions). Similarly, logarithmic corrections are induced into sn,, yielding logarith- 
mic factors into the denominator of (12). A detailed analysis (Kapitulnik et a1 1983) 
finally yields 

Again, these two limiting expressions become comparable at 

L~ = wt(ln t)-'l2 < 5. 

Finally, we comment that similar arguments may be applied to many other phase 
transitions. For example, Ising model clusters have the fractal dimensionality DI = 
d-/3,/vI for d < 4  (Bruce and Wallace 1981, 1983), but D,=3 for d > 4 .  
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